

MADHYANCHAL PROFESSIONAL UNIVERSITY

Program		Faculty		Branch/Specialization	
I	Ph.D Engineer		ring and Technology	Mechanical Engineering	
List of Subjects					
S.No	Subject Code		Name of Subject		
1	MEEN019	9902/01	Experimental stress a	nalysis	
2	MEEN019	9902/02	Maintenance of therm	al power plant equipments	
3	MEEN019	9902/03	Advanced machine de	sign	
4	MEEN019	9902/04	Product design & deve	elopment	
5	MEEN019	9902/05	Metal forming		
6	MEEN019902/06		Advanced materials		
7	MEEN019902/07		Composite materials		
8	MEEN019	9902/08	Advanced machine dy	namics	
9	MEEN019	9902/09	Thermal power plant	engg.	
10	MEEN019	9902/10	Steam and gas turbine	S	
11	MEEN019	9902/11	Finite element method	1	
12	MEEN019902/12		Computer aided desig	n	
13	MEEN019	9902/13	Computers aided man	ufacturing	
14	MEEN019	9902/14	Nanotechnology		
15	MEEN019	9902/15	Artificial Intelligence i	n engineering	
16	MEEN019	9902/16	Design of mechanical	System	

Program	Faculty	Branch/Specialization	Name of Subject	Subject Code	
PhD	Engineering and	Mechanical	Experimental stress	MEEN019902/01	
	Technology	Engineering	analysis		
			1		
TT II		Unit-wise Content distr	ibution		
Unit		Co	ontents		
Unit-I	Overview of expe	rimental stress analysis	s, Stress analysis – Analyt	ical, Numerical and	
	Experimental app	oroaches, Specific dom	ain of these approaches	s, Advantages and	
	disadvantages.				
Unit-II	Optical methods w	work as optical compu	ters, Direct information p	rovided by various	
	experimental meth	ods – brief description, V	/isual appreciation of field i	nformation – Listing	
	of various problem	s of different complexity	•		
Unit-III	Stress, Strain and	Displacement fields for	various problems, Beam u	ınder pure bending,	
	Analytical solution, Fringe contours from various experimental methods, Disc under				
	diametral compres	sion –			
	Analytical solution, Fringe contours from various experimental techniques, Clamped				
	circular plate under a central load - Analytical solution, Fringe contours from various				
	experimental techniques				
Unit-IV	Spanner tightenin	g a nut – completenes	ss of a numerical solution	n, comparison with	
	photoelastic fringes. Physical principle behind various experimental techniques, Strain				
	Gauges, Photoelasticity, Grids for determining plastic strains, Geometric moiré, grating				
	details – u and v displacements, Demonstration of fringes due to				
	translation and rot	ation of gratings of vario	us types		
Unit-V	Strain Gauge Roset	te, Types of rosette, four	r element rectangular roset	te, Tee-delta rosette,	
	rosette analysis. Ap	oplication, Design of turb	o machinery components s	uch as steam turbine	
	rotor, L.P. and H.P	. cylinder diaphragm va	alue rotary compressors an	nd its parts. Fatigue	
	testing and vibration	on studies.			

Text Books/Reference Books

1.Experimental Stress Design; Daly and Reilly

2.Experimental Stress Design; Sadhu Singh

ProgramFacultyBranch/SpecializationName of SubjectSubject CodePhDEngineering and
TechnologyMechanical Engineering
FendingMaintenance of
Thermal power
plant
equipmentsMEEN019902/02

	Unit-wise Content distribution	
Unit Contents		
Unit-I	Maintenance Management, Maintenance strategies, maintenance schedule, emergency	
	maintenance procedure spare part management, Diagnostic Maintenance.	
Unit-II	Machine Health Monitoring, practical application of diagnostic maintenance to specific	
	industrial machinery and plants.	
Unit-III	Various techniques of condition monitoring wear analysis, vibration and noise signature,	
	thermography etc. Mechanism of Lubrication & Lubricants, Lubrication Regimes:	
	Lubrication regimes, analysis and modes of lubrication in different bearings, squeeze	
	films, fluid film, elasto-hydrodynamic and boundary lubrication.	
Unit-IV	Failure Mechanisms and Analysis, Material failure and failure due to environmental	
	effects, Design faults, analysis of engineering failures, failure due to abuse of machinery,	
	failure of seals & packing, failure of bearings, failure of gears, fatigue failure, failure due to	
	time –temperature effects (creep) corrosion etc.	
Unit-V	Maintenance of Power Plant Machinery, Predictive and preventive maintenance of steam	
	turbine and its components. On load and off load cleaning of condenser tubes.	
	Maintenance scheduling of cooling water plants, cooling towers.	

Reference Books;

1. Maintenance & Spare Parts & Management P. Gopal Krishnan

2. Modern Power Station Practice10 Volumes in Reference British Electricity

Program	Faculty	Branch/Specialization	Name of Subject	Subject Code
PhD	Engineering	Mechanical	Advanced machine	MEEN019902/03
	and	Engineering	design	
	Technology			
Unit-wise Content distribution				

Unit	Contents
Unit-I	General consideration for design of machine elements. Types of loadings.
Unit-II	Criteria for failure. Distinction between design approaches for static and fatigue loading and their influences on design criteria.
Unit-III	Designing against fatigue, creep and impact loading. Stress concentration and stress concentration factors. Residual stresses and their determination.
Unit-IV	Types of drives. And their relative merits. Belt drives – design and performance. Chain drive. Gear drives. Strength of gear tooth surface. Beam strength. Strength, deflection and design of shafts. Selection of bearings. Gear drive housing.
Unit-V	Fluid power systems, pumps and accessories, circuit design and applications. Step less drives, P.I.V. drives. Power transmission in machine tools. Stress intensification in presence of sharp notches and cracks. Design of machine elements in presence of cracks.

Reference Books ;

- 1. Advanced Machine Design, Mubeen
- 2. Mechanical Engineering Design, Shigley

Program	Faculty	Branch/Specialization	Name of Subject	Subject Code
PhD	Engineering	Mechanical Engineering	Product design &	MEEN019902/04
	and reenhology	Lingineering	development	

	Unit-wise content distribution
Unit	Contents
Unit-I	Elements of successful product design in their specialist market place. Study of Engineering Marketing relationship. The buying motivation and perception of industrial buyers
Unit-II	Individual customers, industry and government departments. Presentation of designs to potential customers. Acclerated product development.
Unit-III	Variety proliferation. Differential product "fast to market". Forecasting and market research for a new product. Purchasing and sales procedure. Demand analysis for new product.
Unit-IV	Intellectual property right. Introduction to IPR laws, nature, types of intellectual property, IPPP as an economic entity.
Unit-V	Development of IPR copyright, patents, design, trademarks, forms, global IP structure and IPRS in India, Infringement and remedies available, patent search, contractual agreements involving patents. Case studies

Reference Books:

1. Product design and development ;Karl Ulrich and Steven D Eppinger

Program		Faculty	Branch/Specialization	Name of Subject	Subject Code
PhD		Engineering	Mechanical	Metal forming	MEEN019902/05
		and	Engineering		
		Technology			
			Unit-wise Content dist	ribution	
Unit			Conter	nts	
Unit-I	Classificati	on of metal form	ning processes, effect o	f temperature, strain rate a	and microstructural
	variables;	Elementary stress	analysis, Principal stress	ses, Yield criteria	
Unit-II	Residual stresses, experimental techniques, yielding theories, Hot, Cold and Warm working		Warm working of		
	materials				
Unit-III	Classificati	on of forging pro	ocesses, forging equipme	ent, forging defects, Overvie	w of metal forming
	processes, classification, Formability limits, Non-uniformityand segregation in materials			terials	
Unit-IV	Classification of rolling processes, rolling mills, cold rolling, hot rolling, Types of extrusion, process		f extrusion, process		
	variables, wire, rod, and tube drawing				
Unit-V	lubrication processes, stretch forming, deep drawing. Flow curves				

Reference Books:

1. Mechanical Metallurgy Dieter G. E,

2. Engineering Metallurgy, Volume II, Higgins R.A,

3. Mechanical Working of Metals-Theory and Practice Harris J.N

Program	Faculty	Branch/Specialization	Name of Subject	Subject Code
PhD	Engineering	Mechanical Engineering	Advanced materials	MEEN019902/06
	Technology	Engineering		
Unit using Contant distribution				

Unit	Contents		
Unit-I	Nanomaterials: Carbon nanotubes, structure and properties, chemistry of carbon nanotubes		
Unit-II	Graphite whiskers, cones and polyhedral crystals, nanocrystaline diamond, carbide derived carbon nanotubes in multifunctional polymer nano composites		
Unit-III	Composites processing, micromechanics, shape memory alloys (SMAs), metallic foam, Plastics, polymeric materials (molecular viewpoint)		
Unit-IV	Microstructures in polymers, mechanical properties (macro view point) chemical and physical properties (macro view point), designing with plastics		
Unit-V	Thermoplastic materials (commodity plastics), thermoplastic materials (engineering plastics), thermoset materials, elastomeric (rubber) materials, related processes, Environmental aspects of plastics.		

Reference Books;

1.Materials, their Nature, Properties and Fabrication Sukh Dev Sehgal, Lindberg R.A. 2. Light alloys: Metallurgy of Light Metals Polmear I. J.

Program		Faculty	Branch/Specialization	Name of Subject	Subject Code
PhD		Engineering	Mechanical	Composite materials	MEEN019902/07
		and	Engineering		
		Technology			
			Unit-wise Content distr	ribution	
Unit			Conten	its	
Unit-I	Types of	Composites, Rein	forcements, Whiskers,	Laminar composites, Flake	composites, Filled
	composites	, Particulate reinf	orced composites, Crema	ites, Micro-spheres, Solidifica	ation of composites. ,
	Economics of Composites and Reinforcements, Design of Composite Materials, Mechanics			rials, Mechanics of	
	composites				
Unit-II	Applications of Composites, Laminated metal composites, Ceramic materials, Ceramic-metal systems			amic-metal systems,	
	Ceramic glass system, Ceramic-ceramic systems, Metal Matrix Composites				
Unit-III	Reinforcement, Reinforcement selection, Matrix selection, effects of reinforcements, Propertie		cements, Properties,		
	Fabrication, Whisker reinforcement, Whisker composite properties.				
Unit-IV	Al composite foam, functionally gradient composite materials. Composite material for automobile			erial for automobile,	
	aerospace and general Engineering applications.				
Unit-V	V Ceramic Matrix Composites: Particulate reinforced composites, Continuous fiber rein		is fiber reinforced		
	composites	, Chopped fiber	and whisker reinforced	composites, Fabrication p	rocesses, Properties.
	Contents				

Reference Books;

1.Composite Materials Lawrence, J. Broutman;

2. Composite Materials, R.M. Jones

ProgramFacultyBranch/SpecializationName of SubjectSubject CodePhDEngineering
and
TechnologyMechanical
Engineering
TechnologyAdvanced machine
dynamicsMEEN019902/08

Unit-wise Content distribution

Unit	Contents
Unit-I	Gear design: Spur, bevel, worm,
Unit-II	Balancing & vibration analysis, balancing of rotors, balancing of internal combustion engines
Unit-III	Gyroscope applications: Motor cycle
Unit-IV	Four wheel vehicle, aero plane
Unit-V	Naval ship rotor bearing system. Cam dynamics: analysis of an eccentric cam, jump speed analysis of cam, unbalance, spring surge & windup.

Reference Books;

1. Dynamics of Machinery, Farazdak Haideri

- 2. The theory of machines: a text-book for engineering students, Thomas Bevan
- 3. Mechanics of mechanism Ghosh and Mallick
- 4. Theory of Machines S S Rattan
- 5. Kinematics and dynamics of machines, George Henry Martin

Program	Faculty	Branch/Specialization	Name of Subject	Subject Code
PhD	Engineering	Mechanical	Thermal power plant	MEEN019902/09
	and	Engineering	engg.	
	Technology			

Unit-wise Content distribution

Unit	Contents
Unit-I	Conventional thermal power plants, super-critical power plants and its principles of
	working, performance curves and flow diagrams.Power plant components: Fuel and ash
	handling, pulverized fuel firing burners
Unit-II	Dust handling, fluidized bed combustion. Radiant super heaters and re-heaters,
	economizer and pre-heaters, combustion and furnace design, boiler water supply and
	treatment. Drat and arrangement of draft fans
Unit-III	different types of cooling systems, open closed, mixed and dry cooling tower systems, air
	cooled condensers.
Unit-IV	Ejector and vacuum pumps, feed heating systems, heaters, evaporators and de-airator,
	feed line protection, boiler feed pumps, different type of drives for it, steam turbine
	driven feed pumps. Plant instrumentation for thermal power plants, need and
	importance, distributed and centralized, pneumatic and electro-mechanical transducers
	and controllers, distributed computer control.
Unit-V	Piping and insulation: design and layout of ducting for air fuel, gases and pulverized fuels,
	selection of piping, pipe flexibility analysis, Various control valves and actuators.
	Insulation optimum thickness and costs. Installation, commissioning and operation:
	Preliminary performance checks and acceptance test for various components, heat
	balance of items and entire plant. Starting loading and normal operation checks,
	maintenance logging, parallel operations, droop setting, performance analysis,
	maintenance, safety and pollution controls. Plant Management: Preparing specifications
	and contract documents, guarantee. Training of power plant personnel, safety, and
	seismic analysis. Purchase and contract for fuel supplies.

Reference Books;

- 1.Power Plant Engineering, F T Morse
- 2. Power Plant Engineering, P K Nag
- 3. Power Plant Engineering, Arora and Domkundwar

Program	Faculty	Branch/Specialization	Name of Subject	Subject Code
PhD	Engineering	Mechanical	Steam and gas turbines	MEEN019902/10
	and	Engineering		
	Technology			

	Unit-wise Content distribution
Unit	Contents
Unit-I	Steam Turbines: Principle and working of steam turbines, type of turbines, impulse and reactions, compounding for pressure and velocity. Velocity triangles for various types, stage to blade, speed ratio for optimum efficiency, diagram efficiency, steam performance. Energy losses in steam turbine, turbine performance at various loads and governing of steam turbines.
Unit-II	Constructional details and description of steam turbine components in brief. Regenerative feed heating cycles: Introduction : Most Ideal Regenerative f eed heating cycle. Regenerative feed heating cycles and their representation on T-s and h-s Diagram. Representation of actual process on T-s and h-s Diagram Regenerative cycles.
Unit-III	Other types of feed heating arrangements. Optimum feed water temperature and saving in Heat Rate. Feed Heaters, Direct Contact Heaters, Surface Heaters, Deaerators . Unit 3 Reheating – Regenerative and Regenerative water – Extraction Cycles.
Unit-IV	Reheating of steam, Practical reheating and Non- reheating cycles, advantage & disadvantages of reheating, regenerative water extraction cycles, practical feed heating arrangements. Feed heating system for 120MW, 200MW, 350MW, 500MW & 660 MW Units. Mixed Pressure Turbines: Low- pressure Turbines, Mixed pressure Turbines, Heat Accumulators.
Unit-V	Gas Turbines: Open and closed cycles, constant pressure and constant volume cycles, cycles with inter cooling, reheating and heat exchanger, compressor and turbine efficiencies, pressure losses, performance characteristics of various cycles, practical problems. Jet Propulsion: Calculation of thrust, Power, speed and efficiency, turbo – jet and turbo propulsion systems.

Reference Books;

1.Fluid dynamics and heat transfer of turbo-machinery, Budugur akshminarayana,

2. Cohen H Rogers, Sarvanmutto, Gas Turbine Theory, Longman Pub.

3. Mathur, Sharma, Gas turbine, Standard Pub And Distributors Delhi.

Program	Faculty	Branch/Specialization	Name of Subject	Subject Code
PhD	Engineering and Technology	Mechanical Engineering	Finite element method	MEEN019902/11

Unit-wise Content distribution

Unit	Contents
Unit-I	Approaches of FEM- Discrete, Variational and Weighted Residual; Direct Problems- Spring,
Unit-II	Hydraulic Network; Resistance Network and Truss Systems; 1-D Field and Beam Bending Problems-Formulation using Galerkin and Raleigh-Ritz approaches
Unit-III	Derivation of elemental equations and their assembly, Solution and its post processing; 2-D and Axisymetric Field and Stress Problems-Formulation using Galerkin and Raleigh-Ritz approaches, Derivation of elemental equations and their assembly
Unit-IV	Solution and its post processing; 3-D Field and Stress Problems Formulation using Galerkin and Raleigh-Ritz approaches, Derivation of elemental equations and their assembly, Solution and its
Unit-V	Post processing; Eigen value and time dependent problems; Discussion about preprocessors, postprocessors and finite element packages.

Reference Books:

- **1.** Introduction to Finite Elements in Engineering" by T R Chandrupatla and A D Belegundu
- **2.** "Introduction to the Finite Element Method" by J N Reddy
- 3. Finite Element Analysis: Theory and Programming" by C S Krishnamoorthy

Program		Faculty	Branch/Specialization	Name of Subject	Subject Code
PhD		Engineering	Mechanical	Computer aided design	MEEN019902/12
		and	Engineering	1 0	,
		Technology			
			Unit-wise Content dist	ribution	
Unit			Conter	its	
Unit-I	Historical	Development, Ex	plicit and Implicit Equat	ions, Intrinsic Equations, Pa	rametric Equations,
	Coordinate	e Systems,			
Unit-II	Curves: Fundamental of Curve Design, Parametric Space of a Curve, Reparametrization, Space Curves:			ation, Space Curves:	
	Spline Cur	ves, Bezier Curves	s, B-Spline Curve, Rationa	l Polynomials, Rational curve	es, NURBS.
Unit-III	Surfaces: Fundamental of Surface Design, Parametric Space of a Surface, Reparametrization of a			arametrization of a	
	Surface pa	tch, Sixteen point	form, Four Curve Form, I	Plane, Cylindrical and Ruled	Surfaces, Surfaces of
	Revolutions, Bezier Surface, BSpline Surface.				
Unit-IV	Solids: Fur	ndamental of Soli	d Design, Parametric Spa	ice of a Solids; Continuity ar	nd composite Solids,
	Surface an	d Curves in a Solic	ł.		
Unit-V	Solid Modeling: Topology and Geometry, Set theory, Euler Operators, Regularized Boolean Operators,				Boolean Operators,
	Construction Criteria, Graph Based Models, Instances and Parameterized Shapes, Cell-decomposition				
	and Spatial Occupancy Enumeration, Sweep representation, CGS, BRep, Wireframe Analytica			ireframe Analytical	
	properties, Relational				Relational
	properties	and Intersection.	Applications in Mechanic	cal Engineering Design	

Reference Books:

- 1. "Fundamentals Of Cad/Cam/Cim" by Sharma
- 2. Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry (Springer Series in Materials Science)" by John O Milewski
- 3. AutoCAD 2014 For Dummies (Autocad for Dummies)" by Bill Fane and David Byrnes

Program	Faculty	Branch/Specialization	Name of Subject	Subject Code
PhD	Engineering and Technology	Mechanical Engineering	Computers aided manufacturing	MEEN019902/13

Unit-wise Content distribution

Unit	Contents
Unit-I	Fundamentals of Numerical Control: Need and future of NC Systems, Principles and Types of NC,
	Design Features of NC M/c Tools; Machining Centre; NC Part Programming:
Unit-II	Manual, computer Assisted-APT, EXAPT, ADAPT and CAD based Part Programming; Feedback
	DevicesResolvers, Encoders, and nductosyns;
Unit-III	Actuation Systems- Hydraulic, Pneumatic and Electromechanical; Computer Control and Adaptive
	Control System-CNC, DNC and AC; Flexible Manufacturing Systems-Concept and Classification,
Unit-IV	Types of Flexibility, pallets, fixtures, work handling systems, simulation and analysis in the design of
	FMS;
Unit-V	Concurrent Engineering-Objectives, tools and applications; Automated Quality Control Systems-
	Working, Programming and Applications of CMM

Reference Books;

- 1. "Computer Integrated Design and Manufacturing" by David Bedworth and Philip Wolfe
- 2. Computer Aided Manufacturing" by P N Rao
- 3. CAD/CAM : Computer-Aided Design and Manufacturing" by M Groover and E Zimmers

Program	Faculty	Branch/Specialization	Name of Subject	Subject Code
PhD	Engineering and Technology	Mechanical Engineering	Nanotechnology	MEEN019902/14
Unit-wise Content distribution				

	onte-wise content distribution				
Unit	Contents				
Unit-I	Introduction: Background and Fundamentals of Nanotechnology Methods of Measuring Properties:				
	Structure, Microscopy, Spectroscopy				
Unit-II	Properties of Individual Nanoparticles: Metal Nanoclusters, Semiconducting Nanoparticles, Rare Gas				
	and Molecular Clusters, Methods of Synthesis				
Unit-III	Carbon Nanotubes: Fabrication, Structure, Electrical Properties, Vibration Properties, Mechanical				
	Properties, Applications of Carbon Nanotubes Bulk Nanostructured Materials: Solid Disordered				
	Nanostructures, Nanostructured Crystals				
Unit-IV	Nanomachines and Nanodevices: Microelectromechanical Systems (MEMs) and anoelectromechanical				
	Systems (NEMs) Technology, Fabricating MEMS and NEMs, Advantages of MEMs and NEMs. Thin Film				
	Deposition Processes: Chemical Vapor Deposition (CVD), Electrodeposition, Epitaxy, Thermal				
	oxidation, Physical Vapor Deposition (PVD), Evaporation, Sputtering, Casting. Lithography				
Unit-V	Etching Processes: Wet etching and Dry etching Mirco/ Nanoibology: Measurement Technique,				
	Friction and Adhesion: Atomic scale friction, Micro scale friction; Scratching, Wear, Local Deformation				
	and Fabrication/ Machining, Indentation, Lubrication, Challenges and advances in Nanomaterials				
	processing techniques				

Reference Books;

1. "Nano: The Essentials Understanding Nanoscience and Nano" by T Pradeep

2. "Nanomaterials" by B Viswanathan

3. "Introduction to Nanotechnology" by Charles P. Poole; Frank J. Owens

Program	Faculty	Branch/Specialization	Name of Subject	Subject Code
PhD	Engineering	Mechanical	Artificial intelligence in	MEEN019902/15
	and	Engineering	engineering	
	Technology			

Unit-wise Content distribution

Unit	Contents					
Unit-I	Introduction to expert system, Introduction to Artificial intelligence, Expert System					
Unit-II	Overview, Development of expert systems, Problem presentation, Expert system structure, knowledge basis and representation, inference mechanism					
Unit-III	Introduction to PROLOG, data structure, Backtracking and cut, input-output, predates. Equipment selection, Layout design, Material handling, CAPP.					
Unit-IV	Feature extraction and Recognition, Bar code and coding of components.					
Unit-V	Automatic storage and Retrieval Qualitative reasoning, Fuzzy logics, neural nets, application from manufacturing.					

Reference Books;

]

- 1. Computational Intelligence, Control and Computer Vision in Robotics and Automation" by Bidyadhar Subudhi
- 2. "Artificial Intelligence: A Beginner's Guide (Beginner's Guides)" by Blay Whitby
- 3. McGraw-Hill Illustrated Encyclopedia of Robotics and Artificial Intelligence" by Stan Gibilisco

Program		Faculty	Branch/Specialization	Name of Subject	Subject Code	
PhD		Engineering	Mechanical	Design of mechanical	MEEN019902/16	
		and	Engineering	systems		
		Technology				
Unit-wise Content distribution						
Unit	Contents					
Unit-I	Computer Aided Design of one of the following mechanical system with its components. Only one of the sub systems is to be designed.					
Unit-II	Refrigeration System: Design of any of the sub-system of compressor condenser or evaporator. Optimum design for minimum cost & maximum performance					
Unit-III	Automobile System: Design of clutch gearbox and brakes for given power and speed requirements.					
Unit-IV	I.C.Engines: Design of piston, cylinder, connecting rod, Crankshaft, Cam, Camshaft and Valves.					
Unit-V	Machine Tools: Power requirement calculations, frame, bed and guide ways, spindle & bearing design.					

Reference Books;

- 1. "Mechanical System Design" by S P Patil
- 2. "Mechanical System Design" by Anurag D
- 3. "Mechanical System Design" by K U Siddiqui
- 4. "Basic Machines and How They Work" by United States Bureau of Naval Personnel